Advances in Electrochemical Sensing of Depression Biomarker Serotonin: A Comprehensive Review

Authors

  • Shambhavi Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India https://orcid.org/0009-0001-4719-5840
  • Puja Priyadarshni Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India https://orcid.org/0000-0003-2930-4326
  • Nisha Kumari Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India https://orcid.org/0009-0003-9046-3884
  • Ratnesh Kumar Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India https://orcid.org/0000-0002-4736-7390

DOI:

https://doi.org/10.31305/rrijm.2024.v09.n04.002

Keywords:

Serotonin, Neurotransmitter, Modified electrodes, Sensor, Electrochemical techniques

Abstract

The present review deals with detection of serotonin (5-HT) by electrochemical techniques using various modified electrodes.  Serotonin is an important monoamine neurotransmitter, psychoactive agent, and bioactive component. Its detection has a very significant contribution in diagnosing and treating many neurological diseases. Electrochemical techniques provide simple, fast, high selective, sensitive, reproducible, and the low-cost method for the determination of 5-HT. We have extensively reviewed the recently developed approaches in which serotonin has been sensitively detected using modified electrodes even in the presence of interfering agents. The analytical characteristics such as linear range and detection limit on various modified electrode have been compared in the review.

Author Biographies

Shambhavi, Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India

Ms Shambhavi received her Bachelor of Science in Chemistry from Magadh Mahila College, Patna University, Patna, Bihar, India, Master of Science in Chemistry from Magadh Mahila College, Patna University, Patna, Bihar, India. She is currently pursuing her Ph.D. Degree under supervision of Dr. Ratnesh Kumar from Anugrah Narayan College, Patna (A constituent unit of Patliputra University, Patna), Bihar.

Puja Priyadarshni, Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India

Ms Puja Priyadarshni received her Bachelor of Science in Chemistry from Patna Science College, Patna University, Patna, Bihar, India, Master of Science in Chemistry from Department of Chemistry, Patna University, Patna, Bihar, India. She is currently pursuing her Ph.D. Degree under supervision of Dr. Nisha Kumari from Anugrah Narayan College, Patna (A constituent unit of Patliputra University, Patna), Bihar.

Nisha Kumari, Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India

Dr. Nisha Kumari received her Bachelor of Science in Chemistry from Veer Kunwar Singh University, Ara, Bihar, India, Master of Science in Chemistry (Specialization in Organic Chemistry) from Osmania University, Hyderabad, Telangana, India. She obtained her Ph.D. Degree in Chemical Science from Bharathiar University, Coimbatore, Tamil Nadu, India. She is currently working as Assistant Professor of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University, Patna), Bihar, India. Her research interest includes detection and characterization of organophosphorus pesticides and neurotransmitter using electrochemical methods. 

Ratnesh Kumar, Department of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University), Boring Road, Patna, Bihar-800013, India

Dr. Ratnesh Kumar received his Bachelor of Science in Chemistry from Dyal Singh College, University of Delhi, Delhi, India, Master of Science in Chemistry (specialization in Physical Chemistry) from Department of Chemistry, University of Delhi, Delhi, India. He obtained her Ph.D. Degree in Chemical Science from University of Delhi, Delhi, India. He is currently working as Assistant Professor of Chemistry, Anugrah Narayan College, Patna (A constituent unit of Patliputra University, Patna), Bihar, India. His research interest includes detection and characterization of organophosphorus pesticides and neurotransmitter using electrochemical methods.

References

S. G. Lim, S. E. Seo, S. J. Park, J. Kim, Y. Kim, K. H. Kim, J. E. An and O. S. Kwon, Real time monitoring of serotonin with highly selective aptamer functionalized conducting polymer nanohybrids, Nano Convergence, 9 (2022) 31.

J. Song, J. Yang, and X. Yang, Electrochemical determination of 5-Hydroxytryptamine using mesoporous SiO2 modified carbon paste electrode, Russ J Electrochem, 45 (2009) 1346-1350.

A. Cernat, G. Stefan, M. Tertis, C. Cristea, I. Simon, An overview of the detection of serotonin and dopamine with graphene-based sensors, Bioelectrochemistry, 136 (2020) 107620.

M. Su, H. Lan, L. Tian, M. Jiang, X. Cao, C. Zhu, C. Yu, Ti3C2Tx-reduced graphene oxide nanocomposite-based electrochemical sensor for serotonin in human biofluids, Sensor. Actuator. B: Chem., 367 (2022) 132019.

A. G. Bracamonte, A. V. Veglia, Spectrofluorimetric determination of serotonin and 5-hydroxyindoleacetic acid in urine with different cyclodextrin media, Talanta, 83 (2011) 1006-1013.

G. Curzon, A.R. Green, Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain, Br. J. Pharmacol., 39 (3) (1970) 653-655.

J. P. Danaceau, G. M. Anderson, W. M. McMahon, D. J. Crouch, A liquid chromatographic-tandem mass spectrometric method for the analysis of serotonin and related indoles in human whole blood, J. Anal. Toxicol., 27 (7) (2003) 440-444.

N. W. Barnett, B. J. Hindson, S. W. Lewis, Determination of 5-hydroxytryptamine (serotonin) and related indoles by flow injection analysis with acidic potassium permanganate chemiluminescence detection, Anal. Chim. Acta, 362 (1998) 131-139.

H. A. Samie, M. Arvand, RuO2 nanowires on electrospun CeO2-Au nanofibers/functionalized carbon nanotubes/graphite oxide nanocomposite modified screen-printed carbon electrode for simultaneous determination of serotonin, dopamine and ascorbic acid, Journal of Alloys and Compounds, 782 (2019) 824-836.

K. Mahato, B. Purohit, K. Bhardwaj, A. Jaiswal, P. Chandra, Novel electrochemical biosensor for serotonin detection based on goldnanorattles decorated reduced graphene oxide in biological fluids and in vitro model, Biosensors and Bioelectronics, 142 (2019) 111502.

H. M. N. Ahmad, A. Andrade, E. Song, Continuous real-time detection of serotonin using an aptamer-based electrochemical biosensor; Biosensors 13 (2023) 983.

G. Singh, A. Kushwaha, M. Sharma, Highly sensitive and selective detection of serotonin and dopamine with stable oxidation potentials using novel Dy2MoO6 nanosheets, Materials Chemistry and Physics 279 (2022) 125782.

K. Khoshnevisan, E. Honarvarfard, F. Torabi, H. Maleki, H. Baharifar, F. Faridbod, B. Larijani, M. R. Khorramizadeh, Electrochemical detection of serotonin: A new approach, Clinica Chimica Acta, 501 (2020) 112-119.

S. Sharma, N. Singh, V. Tomar, R. Chandra; A review on electrochemical detection of serotonin based on surface modified electrodes, Biosensors and Bioelectronics, 107 (2018) 76–93.

G. Ran, C. Chen, C. Gu, Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate), Microchim Acta, 182 (2015) 1323-1328.

T. D. Thanh, J. Balamurugan, H. V. Hien, N. H. Kim, J. H. Lee, A novel sensitive sensor for serotonin based on high-quality of AuAg nanoalloy encapsulated graphene electrocatalyst, Biosensors and Bioelectronics, 96, (2017) 186-193.

B. Dinesh, V. Veeramani, S.-M. Chen, R. Saraswath, In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine, J. Electroanal. Chem., 786 (2017) 169-176.

A. Abbaspour, A. Noori, A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine, Biosensors and Bioelectronics 26 (2011) 4674-4680.

R. banu, B. E. K. Swamy, E. Ebenso, A glassy carbon electrode modulated with poly (naphthol green B) for simultaneous electroanalysis of serotonin and epinephrine in presence of L-tryptophan, Inorganic Chemistry Communications 145 (2022) 110013.

M. S. de Oliveira, E. A. de O, Farias, A. M. S. de Sousa, N. A. Dionísio, P. R. S. Teixeira, A. S. do N. M. Teixeira, D. Al. da Silva, C. E. M. Sousa de Oliveira, E. A. de O. Farias, Composite films based on copper nanoparticles and nickel phthalocyanine as electrochemical sensors for serotonin detection, Surfaces and Interfaces 25 (2021) 101245.

Y. Ferry, D. Leech, Amperometric detection of catecholamine neurotransmitters using electrocatalytic substrate recycling at a laccase electrode, Electroanalysis, 17, 2005, 113-119.

V. Beni, M. Ghita, D. W. M. Arrigan, Cyclic and pulse voltammetric study of dopamine at the interface between two immiscible electrolyte solutions, Biosensors and Bioelectronics, 20 (2005) 2097-2103.

S. Chandra, K. Arora, D. Bahadur, Impedimetric biosensor based on magnetic nanoparticles for electrochemical detection of dopamine, Materials Science and Engineering: B, 177 (2012) 1531-1537.

H. Filik, A. A. Avan, S. Aydar, Square-wave adsorptive stripping voltammetric determination of serotonin at glassy carbon electrode modified with safranine O, Int. J. Electrochem. Sci., 9 (2014) 2922-2933.

T. Dodevska, D. Hadzhiev, I. Shterev; A Review on electrochemical microsensors for ascorbic acid detection: Clinical, Pharmaceutical, and Food Safety Applications, Micromachines, 14 (2023), 41.

H. Liu, N. Li, H. Zhang, F. Zhang, X. Su, A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots, Talanta, 189 (2018) 190-195.

T. Atici, M. B. Kamac, M. Yilmaz, A.Y. Kabaca, Zinc oxide nanorod/polymethylene blue (deep eutectic solvent)/gold nanoparticles modified electrode for electrochemical determination of serotonin (5-HT), Electrochimica Acta 458 (2023) 142484.

X. Liu, R. Yan, J. Zhu, J. Zhang, X. Liu, Growing TiO2 nanotubes on graphene nanoplatelets and applying the nanonanocomposite as scaffold of electrochemical tyrosinase biosensor, Sensor. Actuator. B: Chem., 209 (2015) 328-335.

Z. Zhou, Y. Zhou, X. Liang, J. Luo, S. Liu, J. Ma, Electrochemical sensor for uranium monitoring in natural water based on poly Nile blue modified glassy carbon electrode, J. Solid State Electrochem., 26 (2022) 1139-1149.

A. Y. Kabaca, M. B. Kamac, M. Yılmaz, T. Atici, Ultra-sensitive electrochemical sensors for simultaneous determination of dopamine and serotonin based on titanium oxide-gold nanoparticles-poly Nile blue (in deep eutectic solvent), Electrochimica Acta, 467 (2023) 143046.

J. H. A. Ferreira, R. M. Peres, M. Nakamura, H. E. Toma, T. C. Canevari, PdNPs/carbon dots/silica hybrid nanostructures: the development of an electrochemical sensor for simultaneous determination of dopamine and serotonin in real samples, J Nanopart Res, 9 (2023) 25.

L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures, Anal Chem., 81 (2009) 7271-7280.

Q. Q. Xu, L. Luo, Z. G. Liu, Z. Guo, X. J. Huang, Highly sensitive and selective serotonin (5-HT) electrochemical sensor based on ultrafine Fe3O4 nanoparticles anchored on carbon spheres, Biosensors and Bioelectronics, 222 (2023) 114990.

K. Shekher, K. Sampath, S. Vandini, M. Satyanarayana, K. V. Gobi, Gold nanoparticle assimilated polymer layer on carbon nanotube matrices for sensitive detection of serotonin in presence of dopamine in-vitro, Inorganica Chimica Acta, 549 (2023) 121399.

S. Moru, V. S. Kumar, S. Kummari, K. Y. Goud, A disposable screen printed electrodes with hexagonal Ni(OH)2 nanoplates embedded chitosan layer for the detection of depression biomarker, Micromachines, 14 (2023) 146.

G. R. Fu, Z. A. Hu, L. J. Xie, X. Q. Jin, Y. L. Xie, Y. X. Wang, Z. Y. Zhang, H. Y. Wu, Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor, Int. J. Electrochem. Sci., 4 (2009) 1052-1062.

B. Wu, S. Yeasmin, Y. Liu, L. J. Cheng; Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes; Sensors and Actuators B: Chemical; Volume 354, (2022), 131216.

G. E. Uwaya, O. E. Fayemi, Electrochemical detection of serotonin in banana at green mediated PPy/Fe3O4NPs nanocomposites modified electrodes, Sensing and Bio-Sensing Research, 28 (2020) 100338.

Q. Zhao, Z. Gan, Q. Zhuang, Electrochemical sensors based on carbon nanotubes, Electroanalysis, 14 (2002) 1609-1613.

G. Ran, Y. Xia, L. Liang, C. Fu, Enhanced response of sensor on serotonin using nickel-reduced graphene oxide by atomic layer deposition, Bioelectrochemistry, 140 (2021) 107820.

L. Nehru, S. Chinnathambi, E. Fazio, F. Neri, S. G. Leonardi, A. Bonavita, G. Neri, Electrochemical sensing of serotonin by a modified MnO2-Graphene electrode; Biosensors, 10 (2020) 33.

S. P. Selvam, K. Yun; A self-assembled silver chalcogenide electrochemical sensor based on rGO-Ag2Se for highly selective detection of serotonin; Sensors and Actuators: B. Chemical, 302 (2020) 127161.

M. C. Bonetto, F. F. Muñoz, V. E. Diz, N. J. Sacco, E. Cortón, Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin, Electrochimica Acta, 283 (2018) 338–348.

D. Sun, H. Li, M. Li, C. Li, H. Dai, D. Sun, B. Yang, Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan, Sensors and Actuators B: chemical, 259 (2018) 433-442.

Y. S. Fang, H. Y. Wang, L. S. Wang, J. F. Wang, Electrochemical immunoassay for procalcitonin antigen detection based on signal amplification strategy of multiple nanocomposites, Biosens. Bioelectron., 51 (2014) 310-316.

O.E. Fayemi, A.S.Adekunle, E.E. Ebenso;Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode;Sensing and Bio-Sensing Research 13, (2017), 17-27.

M. M. Ardakani, A. Khoshroo, High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin, J. Electroanal. Chem., 717–718 (2014) 17-23.

P. K. Brahman, R. A. Dar, K. S. Pitre, Conducting polymer film based electrochemical sensor for the determination of amoxicillin in micellar media, Sensors and Actuators B: Chemical, 176 (2013) 307-314.

P. Gupta, R. N. Goyal, Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin, Talanta, 120 (2014) 17-22.

M. J. Song, S. Kim, N. K. Min, J. H. Jin, Electrochemical serotonin monitoring of poly (ethylenedioxythiophene): poly(sodium4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin; Biosensors and Bioelectronics, 52 (2014) 411–416.

M. M. Ardakani, A. Khoshroo, Electrocatalytic properties of functionalized carbon nanotubes with titanium dioxide and benzofuran derivative/ionic liquid for simultaneous determination of isoproterenol and serotonin, Electrochimica Acta, 130 (2014) 634-641.

J. Cho, S. Schaab, J. A. Roether, A. R. Boccaccini, Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD), J. Nanoparticle Res., 10 (2008) 99-105.

I. Cesarino, H. V. Galesco, S. A. S. Machado, Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid, Materials Science and Engineering C, 40 (2014) 49-54.

Y. C. Tsai, P. C. Hsu, Y. W. Lin, T. M. Wu, Silver nanoparticles in multiwalled carbon nanotube-Nafion for surface-enhanced Raman scattering chemical sensor, Sensors Actuators B, 138 (2009) 5-8.

I. Cesarino, H.V. Galesco, F.C. Moraes, M.R.V. Lanza, S. A. S. Machado, Biosensor based on electrocodeposition of carbon nanotubes/polypyrrole/laccase for neurotransmitter detection, Electroanalysis, 25 (2013) 394-400.

H. S. Han, J. M. You, H. Jeong, S. Jeon, Synthesis of graphene oxide grafted poly(lactic acid) with palladium nanoparticles and its application to serotonin sensing, Applied Surface Science, 284 (2013) 438-445.

Downloads

Published

15-04-2024

How to Cite

Shambhavi, Priyadarshni, P., Kumari, N., & Kumar, R. (2024). Advances in Electrochemical Sensing of Depression Biomarker Serotonin: A Comprehensive Review. RESEARCH REVIEW International Journal of Multidisciplinary, 9(4), 8–17. https://doi.org/10.31305/rrijm.2024.v09.n04.002