Stable Polymer Formation Using Temperature as a Catalyst: A Comprehensive Study


  • Dr. Subita Bhagat Assistant Professor, Sant Longowal Institute of engineering and technology (SLIET)



Temperature-driven polymerization, stability, sustainability, catalyst alternative, environmental impact


Polymerization processes are crucial in the production of various materials with diverse applications. This study explores the innovative approach of utilizing temperature as a catalyst in polymer formation to enhance stability and control. The research aims to understand the challenges in traditional polymerization methods, define the problem, outline the study objectives, and present conclusions drawn from the investigation. This study explores temperature-driven polymerization as an innovative catalyst for stable polymer formation, aiming to replace traditional chemical catalysts. By investigating its feasibility, stability, control, and environmental impact, this research contributes to sustainable polymer synthesis. The findings reveal temperature's potential as a catalyst alternative for environmentally conscious polymerization processes.


Abellan, P., Woehl, T. J., Parent, L. R., Browning, N. D., Evans, J. E., & Arslan, I. (2014). Factors influencing quantitative liquid (scanning) transmission electron microscopy. Chem. Commun., 50(38), 4873–4880.

Benbow, N. L., Webber, J. L., Pawliszak, P., Sebben, D. A., Ho, T. T. M., Vongsvivut, J., Tobin, M. J., Krasowska, M., & Beattie, D. A. (2018). A Novel Soft Contact Piezo-Controlled Liquid Cell for Probing Polymer Films under Confinement using Synchrotron FTIR Microspectroscopy. Scientific Reports, 8(1).

Canning, S. L., Smith, G. N., & Armes, S. P. (2016). A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules, 49(6), 1985–2001.

Jin, B., Sushko, M. L., Liu, Z., Jin, C., & Tang, R. (2018). In situ liquid cell TEM reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution. Nano Lett., 18(10), 6551–6556.

Liu, F., Brady, M. A., & Wang, C. (2016). Resonant soft X-ray scattering for polymer materials. Eur. Polym. J., 81, 555–568.

McAfee, T., Ferron, T., Cordova, I. A., Pickett, P. D., McCormick, C. L., Wang, C., & Collins, B. A. (2021). Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration. Nat. Commun., 12(1).

Patterson, J. P., Robin, M. P., Chassenieux, C., Colombani, O., & O’Reilly, R. K. (2014). The analysis of solution self-assembled polymeric nanomaterials. Chem. Soc. Rev., 43(8), 2412–2425.

Wang, C., Lee, D. H., Hexemer, A., Kim, M. I., Zhao, W., Hasegawa, H., Ade, H., & Russell, T. P. (2011). Defining the nanostructured morphology of triblock copolymers using resonant soft X-ray scattering. Nano Lett., 11(9), 3906–3911.

Wrede, O., Reimann, Y., Lülsdorf, S., Emmrich, D., Schneider, K., Schmid, A. J., Zauser, D., Hannappel, Y., Beyer, A., Schweins, R., Gölzhäuser, A., Hellweg, T., & Sottmann, T. (2018). Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports, 8(1).

Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P., & Dahmen, U. (2009). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9(6), 2460–2465.




How to Cite

Bhagat, S. (2023). Stable Polymer Formation Using Temperature as a Catalyst: A Comprehensive Study. RESEARCH REVIEW International Journal of Multidisciplinary, 8(2), 128–132.